
CHAPTER 13
GRAPH ALGORITHMS
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REMINDER
WEIGHTED GRAPHS

• In a weighted graph, each edge has an associated numerical value, called the weight of the 

edge

• Edge weights may represent, distances, costs, etc.

• Example:

• In a  flight route graph, the weight of an edge represents the distance in miles between the endpoint 

airports
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MINIMUM SPANNING TREE

• Spanning subgraph

• Subgraph of a graph 𝐺 containing all the 

vertices of 𝐺

• Spanning tree

• Spanning subgraph that is itself a (free) tree

• Minimum spanning tree (MST)

• Spanning tree of a weighted graph with 

minimum total edge weight

• Applications

• Communications networks

• Transportation networks
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EXERCISE
MST

• Show an MST of the following graph.
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CYCLE PROPERTY

• Cycle Property:

• Let 𝑇 be a minimum spanning tree of a 

weighted graph 𝐺

• Let 𝑒 be an edge of 𝐺 that is not in 𝑇 and 

𝐶 let be the cycle formed by 𝑒 with 𝑇

• For every edge 𝑓 of 𝐶, 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓 ≤

𝑤𝑒𝑖𝑔ℎ𝑡 𝑒

• Proof:

• By contradiction

• If 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓 > 𝑤𝑒𝑖𝑔ℎ𝑡(𝑒) we can get a 

spanning tree of smaller weight by replacing 

𝑒 with 𝑓
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PARTITION PROPERTY

• Partition Property:

• Consider a partition of the vertices of 𝐺 into subsets 𝑈
and 𝑉

• Let 𝑒 be an edge of minimum weight across the partition

• There is a minimum spanning tree of G containing edge 

𝑒

• Proof:

• Let 𝑇 be an MST of 𝐺

• If 𝑇 does not contain 𝑒, consider the cycle 𝐶 formed by 

𝑒 with 𝑇 and let 𝑓 be an edge of 𝐶 across the partition

• By the cycle property,

𝑤𝑒𝑖𝑔ℎ𝑡 𝑓 ≤ 𝑤𝑒𝑖𝑔ℎ𝑡(𝑒)

• Thus, 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓 = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑒

• We obtain another MST by replacing 𝑓 with 𝑒
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PRIM-JARNIK’S ALGORITHM

• We pick an arbitrary vertex 𝑠 and we grow the MST as a cloud of vertices, starting 

from 𝑠

• We store with each vertex 𝑣 a label 𝑑 𝑣 = the smallest weight of an edge 

connecting 𝑣 to a vertex in the cloud 

• At each step:

• We add to the cloud the vertex 𝑢 outside the 

cloud with the smallest distance label

• We update the labels of the vertices adjacent 

to 𝑢



PRIM-JARNIK’S ALGORITHM

• An adaptable priority queue stores the vertices 

outside the cloud

• Key: distance, 𝐷[𝑣]

• Element: vertex 𝑣

• 𝑄. 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝐾𝑒𝑦 𝑖, 𝑘 changes the key of an item

• We store three labels with each vertex 𝑣:

• Distance 𝐷[𝑣]

• Parent edge in MST 𝑃[𝑣]

• Locator in priority queue

Algorithm PrimJarnikMST(𝐺)
Input: A weighted connected graph 𝐺
Output: A minimum spanning tree 𝑇 of 𝐺
1. Pick any vertex 𝑣 of 𝐺
2. 𝐷 𝑣 ← 0; 𝑃 𝑣 ← ∅
3. for each vertex 𝑢 ≠ 𝑣 do

4. 𝐷 𝑢 ← ∞; 𝑃 𝑢 ← ∅
5. 𝑇 ← ∅
6. Priority queue 𝑄 of vertices with 𝐷[𝑢] as the key

7. while ¬𝑄. empty( ) do

8. 𝑢 ← 𝑄. removeMin( )
9. Add vertex 𝑢 and edge 𝑃[𝑢] to 𝑇
10. for each 𝑒 ∈ 𝑢. incidentEdges do

11. 𝑧 ← 𝑒. opposite 𝑢
12. if 𝑒.weight( ) < 𝐷[𝑧]
13. 𝐷 𝑧 ← 𝑒.weight( ); 𝑃 𝑧 ← 𝑒
14. 𝑄. replaceKey 𝑧, 𝐷[𝑧]
15. return 𝑇
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EXERCISE
PRIM’S MST ALGORITHM

• Show how Prim’s MST algorithm works on the following graph, assuming you 

start with SFO

• Show how the MST evolves in each iteration (a separate figure for each iteration).
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ANALYSIS

• Graph operations

• Method incidentEdges is called once for each vertex

• Label operations

• We set/get the distance, parent and locator labels of vertex 𝑧 𝑂 deg 𝑧 times

• Setting/getting a label takes 𝑂 1 time

• Priority queue operations

• Each vertex is inserted once into and removed once from the priority queue, where each insertion or 

removal takes 𝑂 log 𝑛 time

• The key of a vertex 𝑤 in the priority queue is modified at most deg 𝑤 times, where each key change 

takes 𝑂 log𝑛 time 

• Prim-Jarnik’s algorithm runs in 𝑂 𝑛 +𝑚 log 𝑛 time provided the graph is represented by 

the adjacency list structure

• Recall that Σ𝑣 deg 𝑣 = 2𝑚

• The running time is 𝑂 𝑚 log𝑛 since the graph is connected



KRUSKAL’S ALGORITHMS

• A priority queue stores the edges outside the cloud

• Key: weight

• Element: edge

• At the end of the algorithm

• We are left with one cloud that encompasses the MST

• A tree T which is our MST

Algorithm KruskalMST(𝐺)
1. for each vertex 𝑣 ∈ 𝐺. vertices do

2. Define a cluster 𝐶 𝑣 ← 𝑣
3. Initialize a priority queue 𝑄 of edges using the 

weights as keys

4. 𝑇 ← ∅
5. while 𝑇 has fewer than 𝑛 − 1 edges do

6. 𝑢, 𝑣 ← 𝑄. removeMin( )
7. if 𝐶 𝑣 ≠ 𝐶(𝑢) then

8. Add 𝑢, 𝑣 to 𝑇
9. Merge 𝐶 𝑣 and 𝐶 𝑢
10. return 𝑇



DATA STRUCTURE FOR KRUSKAL’S ALGORITHM

• The algorithm maintains a forest of trees

• An edge is accepted it if connects distinct 

trees

• We need a data structure that maintains a 

partition, i.e., a collection of disjoint sets, 

with the operations:

• find 𝑢 : return the set storing u

• union 𝑢, 𝑣 : replace the sets storing u and v 

with their union



REPRESENTATION OF A PARTITION

• Each set is stored in a sequence

• Each element has a reference back to the set

• Operation 𝑓𝑖𝑛𝑑 𝑢 takes 𝑂 1 time, and returns the set of which 𝑢 is a member.

• In operation 𝑢𝑛𝑖𝑜𝑛 𝑢, 𝑣 , we move the elements of the smaller set to the sequence of the larger set and 

update their references

• The time for operation 𝑢𝑛𝑖𝑜𝑛(𝑢, 𝑣) is 𝑂 min 𝑛𝑢, 𝑛𝑣 , where 𝑛𝑢 and 𝑛𝑣 are the sizes of the sets storing 

𝑢 and 𝑣

• Whenever an element is processed, it goes into 

a set of size at least double, hence each element 

is processed at most log 𝑛 times



ANALYSIS

• A partition-based version of Kruskal’s Algorithm performs cluster merges as 

unions and tests as finds.

• Running time

• There will be at most 𝑚 removals from the priority queue - 𝑂 𝑚 log 𝑛

• Each vertex can be merged at most log 𝑛 times, as the clouds tend to “double” in size -

𝑂 𝑛 log 𝑛

• Total: 𝑂 𝑛 + 𝑚 log𝑛
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EXERCISE
KRUSKAL’S MST ALGORITHM

• Show how Kruskal’s MST algorithm works on the following graph.

• Show how the MST evolves in each iteration (a separate figure for each iteration).
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SHORTEST PATHS
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WEIGHTED GRAPHS

• In a weighted graph, each edge has an associated numerical value, called the 

weight of the edge

• Edge weights may represent, distances, costs, etc.

• Example:

• In a  flight route graph, the weight of an edge represents the distance in miles between the 

endpoint airports
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SHORTEST PATH PROBLEM

• Given a weighted graph and two vertices 𝑢 and 𝑣, we want to find a path of 

minimum total weight between 𝑢 and 𝑣.

• Length of a path is the sum of the weights of its edges.

• Example:

• Shortest path between Providence and Honolulu

• Applications

• Internet packet routing 

• Flight reservations

• Driving directions
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SHORTEST PATH PROBLEM

• If there is no path from 𝑣 to 𝑢, we denote the distance between them by 

𝑑 𝑣, 𝑢 = ∞

• What if there is a negative-weight cycle in the graph?
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SHORTEST PATH PROPERTIES

• Property 1:

• A subpath of a shortest path is itself a shortest path

• Property 2:

• There is a tree of shortest paths from a start vertex to all the other vertices

• Example:

• Tree of shortest paths

from Providence
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DIJKSTRA’S ALGORITHM

• The distance of a vertex 𝑣 from a vertex 𝑠 is the 

length of a shortest path between 𝑠 and 𝑣

• Dijkstra’s algorithm computes the distances of all 

the vertices from a given start vertex 𝑠
(single-source shortest paths)

• Assumptions:

• The graph is connected

• The edges are undirected

• The edge weights are nonnegative

• Extremely similar to Prim-Jarnik’s MST Algorithm

• We grow a “cloud” of vertices, beginning with 𝑠
and eventually covering all the vertices

• We store with each vertex 𝑣 a label 𝐷 𝑣
representing the distance of 𝑣 from 𝑠 in the 

subgraph consisting of the cloud and its adjacent 

vertices

• The label 𝐷 𝑣 is initialized to positive infinity

• At each step

• We add to the cloud the vertex 𝑢 outside the cloud with 

the smallest distance label, 𝐷 𝑣

• We update the labels of the vertices adjacent to 𝑢, in a 

process called edge relaxation



EDGE RELAXATION

• Consider an edge 𝑒 = 𝑢, 𝑧 such that

• 𝑢 is the vertex most recently added to the 

cloud

• 𝑧 is not in the cloud

• The relaxation of edge 𝑒 updates 

distance 𝐷 𝑧 as follows:

• 𝐷 𝑧 ← min 𝐷 𝑧 , 𝐷 𝑢 + 𝑒.𝑤𝑒𝑖𝑔ℎ𝑡
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EXERCISE
DIJKSTRA’S ALGORITHM

• Show how Dijkstra’s algorithm works on the following graph, assuming you 

start with SFO, i.e., 𝑠 =SFO.

• Show how the labels are updated in each iteration (a separate figure for each iteration).
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DIJKSTRA’S ALGORITHM

• A locator-based priority queue stores the

vertices outside the cloud

• Key: distance

• Element: vertex

• We store with each vertex:

• distance 𝐷 𝑣 label

• locator in priority queue

Algorithm Dijkstras_sssp 𝐺, 𝑠
Input: A simple undirected weighted graph 𝐺 with nonnegative edge weights 

and a source vertex 𝑠
Output: A label 𝐷 𝑣 for each vertex 𝑣 of 𝐺, such that 𝐷 𝑢 is the length

of the shorted path from 𝑠 to 𝑣
1. 𝐷 𝑠 ← 0; 𝐷 𝑣 ← ∞ for each vertex 𝑣 ≠ 𝑠
2. Let priority queue 𝑄 contain all the vertices of 𝐺 using 𝐷 𝑣 as the key

3. while ¬𝑄. empty do //𝑂 𝑛 iterations

4. //pull a new vertex 𝑢 in the cloud

5. 𝑢 ← 𝑄. removeMin //𝑂 log 𝑛

6. for each edge 𝑒 ∈ 𝑢. incidentEdges( ) do //𝑂 𝑑𝑒𝑔 𝑢 iterations

7. //relax edge 𝑒
8. 𝑧 ← 𝑒. opposite 𝑢
9. if 𝐷 𝑢 + 𝑒.weight < 𝐷[𝑧] then

10. 𝐷 𝑧 ← 𝐷 𝑢 + 𝑒.weight
11. 𝑄. updateKey 𝑧 //𝑂 log 𝑛



ANALYSIS

• Graph operations

• Method incidentEdges is called once for each vertex

• Label operations

• We set/get the distance and locator labels of vertex 𝑧 𝑂 deg 𝑧 times

• Setting/getting a label takes 𝑂 1 time

• Priority queue operations

• Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes 𝑂 log𝑛
time

• The key of a vertex in the priority queue is modified at most deg 𝑤 times, where each key change takes 𝑂 log𝑛 time 

• Dijkstra’s algorithm runs in 𝑂 𝑛 +𝑚 log𝑛 time provided the graph is represented by the adjacency list 

structure

• Recall that Σ𝑣 deg 𝑣 = 2𝑚

• The running time can also be expressed as 𝑂 𝑚 log𝑛 since the graph is connected

• The running time can be expressed as a function of 𝑛, 𝑂 𝑛2 log 𝑛



EXTENSION

• Using the template method pattern, we can extend Dijkstra’s algorithm to 

return a tree of shortest paths from the start vertex to all other vertices

• We store with each vertex a third label:

• parent edge in the shortest path tree

• Parents are all initialized to null

• In the edge relaxation step, we update the parent label as well



WHY DIJKSTRA’S ALGORITHM WORKS

• Dijkstra’s algorithm is based on the greedy 

method. It adds vertices by increasing distance.

• Proof by contradiction

• Suppose it didn’t find all shortest distances. Let 𝐹
be the first wrong vertex the algorithm processed.

• When the previous node, 𝐷, on the true shortest 

path was considered, its distance was correct.

• But the edge 𝐷, 𝐹 was relaxed at that time!

• Thus, so long as 𝐷 𝐹 > 𝐷 𝐷 , 𝐹’s distance 

cannot be wrong.  That is, there is no wrong 

vertex.
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WHY IT DOESN’T WORK FOR
NEGATIVE-WEIGHT EDGES

• Dijkstra’s algorithm is based on the 

greedy method. It adds vertices by 

increasing distance.

• If a node with a negative incident edge 

were to be added late to the cloud, it 

could mess up distances for vertices 

already in the cloud. 

C’s true 
distance is 1, 
but it is already 
in the cloud 
with 𝐷 𝐶 = 2!

CB

A

E

D

F

0

428

 

48

7 -3

2 5

2

3 9

CB

A

E

D

F

0

028

5 11

48

7 -3

2 5

2

3 9



BELLMAN-FORD ALGORITHM

• Works even with negative-weight edges

• Must assume directed edges (for otherwise 

we would have negative-weight cycles)

• Iteration 𝑖 finds all shortest paths that use 𝑖
edges.

• Running time: 𝑂 𝑛𝑚

• Can be extended to detect a negative-

weight cycle if it exists 

• How?

Algorithm BellmanFord 𝐺, 𝑠
1. Initialize 𝐷 𝑠 ← 0 and 𝐷 𝑣 ← ∞ for all 

vertices 𝑣 ≠ 𝑠
2. for 𝑖 ← 1…𝑛 − 1 do

3. for each 𝑒 ∈ 𝐺. edges do

4. //relax edge 𝑒
5. 𝑢 ← 𝑒. source ; 𝑧 ← 𝑒. target
6. if 𝐷 𝑢 + 𝑒.weight < 𝐷 𝑧 then

7. 𝐷 𝑧 ← 𝐷 𝑢 + 𝑒.weight



BELLMAN-FORD EXAMPLE

8

-2



0







48

7 1

-2 5

-2

3 9

-2

0



4



48

7 1

-2 5

3 9

• Nodes are labeled with their 𝐷[𝑣] values
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EXERCISE
BELLMAN-FORD’S ALGORITHM

• Show how Bellman-Ford’s algorithm works on the following graph, assuming 

you start with the top node

• Show how the labels are updated in each iteration (a separate figure for each iteration).
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ALL-PAIRS SHORTEST PATHS

• Find the distance between every pair of vertices in a weighted 
directed graph 𝐺

• We can make 𝑛 calls to Dijkstra’s algorithm (if no negative 
edges), which takes 𝑂 𝑛𝑚 log𝑛 time.

• Likewise, 𝑛 calls to Bellman-Ford would take 𝑂 𝑛2𝑚 time.

• We can achieve 𝑂 𝑛3 time using dynamic programming 
(similar to the Floyd-Warshall algorithm).

Algorithm AllPairsShortestPath 𝐺
Input: Graph 𝐺 with vertices labeled 1,… , 𝑛
Output: Distances 𝐷 𝑖, 𝑗 of shortest path lengths between

each pair of vertices

1. for each vertex pair 𝑖, 𝑗 do

2. if 𝑖 = 𝑗 then

3. 𝐷0 𝑖, 𝑖 ← 0
4. else if 𝑒 = 𝑖, 𝑗 is an edge in 𝐺 then

5. 𝐷0 𝑖, 𝑗 ← 𝑒.weight
6. else

7. 𝐷0 𝑖, 𝑗 ← ∞
8. for 𝑘 ← 1…𝑛 do

9. for 𝑖 ← 1…𝑛 do

10. for 𝑗 ← 1…𝑛 do

11. 𝐷𝑘 𝑖, 𝑗 ← min 𝐷𝑘−1 𝑖, 𝑗 , 𝐷𝑘−1 𝑖, 𝑘 + 𝐷𝑘−1 𝑘, 𝑗
12. return 𝐷𝑛

k

j

i

Uses only vertices
numbered 𝑖, … , 𝑘 Uses only vertices

numbered 𝑘,… , 𝑗

Uses only vertices numbered 𝑖, … , 𝑗
(compute weight of this edge)


