1
A

@
j CHAPTER 13 @22 iy
GRAPH ALGORITHMS

([ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH
}) DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND
O j) MOUNT (WILEY 2004) AND SLIDES FROM NANCY M. AMATO

REMINDER
WEIGHTED GRAPHS

® In a weighted graph, each edge has an associated numerical value, called the weight of the
edge

®* Edge weights may represent, distances, costs, etc.

®* Example:

® In a flight route graph, the weight of an edge represents the distance in miles between the endpoint

airports

1§ MINIMUM SPANNING TREE

O
® Spanning subgraph
* Subgraph of a graph G containing all the
vertices of G
l ® Spanning subgraph that is itself a (free) tree
Cf ®* Spanning tree of a weighted graph with
O minimum total edge weight

® Applications
® Communications networks

® Transportation networks

Q\)
1\0 /I\E,éERCISE

O

® Show an MST of the following graph.

1§ CYCLE PROPERTY

O

® Cycle Property:
®* Let T be a minimum spanning tree of a
weighted graph G

® Let e be an edge of G that is not in T and
l C let be the cycle formed by e with T

® For every edge f of C, weight(f) <
weight(e)

[o« preot

® By contradiction

* If weight(f) > weight(e) we can get a

spanning tree of smaller weight by replacing

e with f

1 2

Replacing f with e yields
a better spanning tree

O

1§ PARTITION PROPERTY

® Partition Property:

* Consider a partition of the vertices of G into subsets U

and V

Let € be an edge of minimum weight across the partition

® There is a minimum spanning tree of G containing edge

e

® Proof:

@) 3

/.

Let T be an MST of G

If T does not contain e, consider the cycle C formed by
e with T and let f be an edge of C across the partition

By the cycle property,
weight(f) < weight(e)

Thus, weight(f) = weight(e)
We obtain another MST by replacing f with e

Replacing f with e yields
another MST

1§ PRIM-JARNIK'S ALGORITHM

/
O [[. o
®* We pick an arbitrary vertex s and we grow the MST as a cloud of vertices, starting
from s
® We store with each vertex v a label d(v) = the smallest weight of an edge
connecting v to a vertex in the cloud
® At each step:
®* We add to the cloud the vertex u outside the
Cf cloud with the smallest distance label
O

®* We update the labels of the vertices adjacent
fou

1§ PRIM-JARNIK'S ALGORITHM

/]
o Algorithm Prim]JarnikMST(G)
* An adaptable priority queue stores the vertices Input: A weighted connected graph G
outside the cloud Output: A minimum spanning tree T of G

Pick any vertex v of G
D[v] « 0; P[v] « @
for each vertex u # v do
D[u] « o; Plu] « @
T <@
Priority queue Q of vertices with D[u] as the key
while =Q.empty() do
u < @Q.removeMin()
Add vertex u and edge P[u] to T
for each e € u.incidentEdges() do
Z « e.opposite(u)
if e.weight() < D[z]
D[z] « e.weight(); P[z] < e
Q.replaceKey(z, D[z])

. return T

* Key: distance, D[v]

® Element: vertex v

* Q.replaceKey(i, k) changes the key of an item
l ®* We store three labels with each vertex v:

* Distance D[v]

20 00 N O i

-) e) .l
b

* Parent edge in MST P[v]
C‘) ® Locator in priority queue

/1§ EXAMPLE 7

l
0 (-
i

K EXERCISE
1 PRIM’S MST ALGORITHM

O

® Show how Prim’s MST algorithm works on the following graph, assuming you
start with SFO

* Show how the MST evolves in each iteration (a separate figure for each iteration).

ANALYSIS

Graph operations

* Method incidentEdges is called once for each vertex

Label operations
* We set/get the distance, parent and locator labels of vertex z 0(deg(z)) times
* Setting/getting a label takes 0(1) time

Priority queue operations

® Each vertex is inserted once into and removed once from the priority queue, where each insertion or
removal takes O (logn) time

* The key of a vertex W in the priority queue is modified at most deg(w) times, where each key change
takes O(logn) time

Prim-Jarnik’s algorithm runs in 0((71 + m) log n) time provided the graph is represented by
the adjacency list structure

* Recall that £, deg(v) = 2m

The running time is O(mlogn) since the graph is connected

1§ KRUSKAL'S ALGORITHMS

O

® A priority queue stores the edges outside the cloud
* Key: weight

® Element: edge

® At the end of the algorithm
l ®* We are left with one cloud that encompasses the MST

® A tree T which is our MST

Algorithm KruskalMST(G)
for each vertex v € G.vertices() do
Define a cluster C(v) « {v}

1.

2.

3. Initialize a priority queuve Q of edges using the
weights as keys

4 T<0

3. while T has fewer than n — 1 edges do

6. (u,v) « Q.removeMin()

/. if C(v) # C(u) then

8 Add (u,v) to T

Q. Merge C(v) and C(u)

10. return T

1§ DATA STRUCTURE FOR KRUSKAL'S ALGORITHM

O

® The algorithm maintains a forest of trees

®* An edge is accepted it if connects distinct

tfrees

®* We need a data structure that maintains a
partition, i.e., a collection of disjoint sets,
with the operations:

* find(u): return the set storing u

* union(u, v): replace the sets storing u and v

with their union

REPRESENTATION OF A PARTITION

® Each set is stored in a sequence

®* Each element has a reference back to the set
* Operation find(u) takes O(1) time, and returns the set of which u is a member.

®* |n operation union(u, v), we move the elements of the smaller set to the sequence of the larger set and
update their references

* The time for operation union(u, v) is 0(min(n,,n,)), where n,, and n,, are the sizes of the sets storing
u and v

®* Whenever an element is processed, it goes into
a set of size at least double, hence each element
is processed at most log n times

1\) ANALYSIS

/
O

® A partition-based version of Kruskal’s Algorithm performs cluster merges as

unions and tests as finds.

® Running time

l ® There will be at most m removals from the priority queue - O(mlogn)
® Each vertex can be merged at most log n times, as the clouds tend to “double” in size -

T o O(nlogn)

* Total: 0((n + m) log n)

EXAMPLE

O

O

O

Q\O
1\] EXAMPLE

O

",

O

Q\O
1\] EXAMPLE

O

%\O
1\] EXAMPLE

O

O

O

1\@ EXAMPLE

O

_O

1\@ EXAMPLE

O

_O

1\@ EXAMPLE

O

_O

1\@ EXAMPLE

O

O

Q EXERCISE
1 KRUSKAL'S MST ALGORITHM

O

® Show how Kruskal’s MST algorithm works on the following graph.

* Show how the MST evolves in each iteration (a separate figure for each iteration).

SSSSSSSSSSSSS

WEIGHTED GRAPHS

® In a weighted graph, each edge has an associated numerical value, called the
weight of the edge

®* Edge weights may represent, distances, costs, etc.
d d Yy rep

®* Example:

® In a flight route graph, the weight of an edge represents the distance in miles between the
endpoint airports

1\\5 SHORTEST PATH PROBLEM

/
O o . [o
* Given a weighted graph and two vertices u and v, we want to find a path of
minimum total weight between u and v.
* Length of a path is the sum of the weights of its edges.
®* Example:
® Shortest path between Providence and Honolulu

® Applications
T P ® Internet packet routing

® Flight reservations

® Driving directions

1\\5 SHORTEST PATH PROBLEM

O
® If there is no path from v to u, we denote the distance between them by
d(v,u) = oo
l ®* What if there is a negative-weight cycle in the graph?

1\\5 SHORTEST PATH PROPERTIES

/)
O
® Property 1:
* A subpath of a shortest path is itself a shortest path
® Property 2:
l ®* There is a tree of shortest paths from a start vertex to all the other vertices

®* Example:
T P ®* Tree of shortest paths

from Providence

\

DIJKSTRA'S ALGORITHM

The distance of a vertex v from a vertex s is the
length of a shortest path between s and v

Dijkstra’s algorithm computes the distances of all
the vertices from a given start vertex s
(single-source shortest paths)

Assumptions:
® The graph is connected
®* The edges are undirected

®* The edge weights are nonnegative

Extremely similar to Prim-Jarnik’s MST Algorithm

We grow a “cloud” of vertices, beginning with s
and eventually covering all the vertices

We store with each vertex v a label D[v]
representing the distance of v from s in the
subgraph consisting of the cloud and its adjacent
vertices

The label D[v] is initialized to positive infinity

At each step

®* We add to the cloud the vertex u outside the cloud with
the smallest distance label, D[v]

®* We update the labels of the vertices adjacent to u, in a
process called edge relaxation

1§ EDGE RELAXATION

O

® Consider an edge e = (u, z) such that

® U is the vertex most recently added to the

cloud

l ® 7 is not in the cloud

®* The relaxation of edge e updates

@ distance D[z] as follows:

* D[z] « min(D |z], D[u] + e.weight())

%

O

1.
2.

Pull in one of the vertices with red [abels

The relaxation of edges updates the labels of LARGER
font size

s
(

K EXERCISE
1 DIJKSTRA'S ALGORITHM

O

® Show how Dijkstra’s algorithm works on the following graph, assuming you
start with SFQ, i.e., s =SFO.

* Show how the labels are updated in each iteration (a separate figure for each iteration).

1\\5 DIJKSTRA'S ALGORITHM

O Algorithm Dijkstras sssp(G, s)
* A locator-based priority queue stores the

vertices outside the cloud

Input: A simple undirected weighted graph G with nonnegative edge weights
and a source vertex S

* Key: distance Output: A label D[v] for each vertex v of G, such that D[u] is the length
® Element: vertex of the shorted path from s to v
e We store [T ARNNRERNNN 1. D[s] « 0; D[v] « o for each vertex v # s
' 2. Let priority queue Q contain all the vertices of G using D[v] as the key
* distance D[v] label 3. while =0.empty() do
® locator in priority queue 4.
5. u < Q.removeMin()
6. for each edge e € u.incidentEdges() do
/.
8. Z « e.opposite(u)
9. if D[u] + e.weight() < D[z] then
p 10. D[z] « D[u] + e. weight()
11. Q.updateKey(z)

\

P

ANALYSIS

® Graph operations

®* Method incidentEdges is called once for each vertex

® Label operations
®* We set/get the distance and locator labels of vertex z 0(deg(z)) times
* Setting/getting a label takes 0(1) time

® Priority queue operations

® Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes O (logn)
time

* The key of a vertex in the priority queue is modified at most deg(w) times, where each key change takes O(logn) time

® Dijkstra’s algorithm runs in O((n + m) log n) time provided the graph is represented by the adjacency list
structure

® Recall that ¥, degv = 2m
®* The running time can also be expressed as O(mlogn) since the graph is connected

* The running time can be expressed as a function of n, 0(n?logn)

O

1\\5 EXTENSION ;g

® Using the template method pattern, we can extend Dijkstra’s algorithm to

return a tree of shortest paths from the start vertex to all other vertices

® We store with each vertex a third label:

®* parent edge in the shortest path tree
® Parents are all initialized to null

/) ® In the edge relaxation step, we update the parent label as well
O

1§ WHY DIJKSTRA'S ALGORITHM WORKS

/]
O - .
* Dijkstra’s algorithm is based on the greedy
method. It adds vertices by increasing distance.
® Proof by contradiction
® Suppose it didn’t find all shortest distances. Let F
be the first wrong vertex the algorithm processed.
®* When the previous node, D, on the true shortest
path was considered, its distance was correct.
@) ® But the edge (D, F) was relaxed at that time!

® Thus, so long as D[F] > D[D], F’s distance
cannot be wrong. That is, there is no wrong

vertex.

/O

NEGATIVE-WEIGHT EDGES

N N4
1\) WHY IT DOESN'T WORK FOR ‘_ f

/
O
® Dijkstra’s algorithm is based on the
greedy method. It adds vertices by
increasing distance. > Cstrue
distance is 1,
* If a node with a negative incident edge but it is already
were to be added late to the cloud, it in the cloud
could mess up distances for vertices with D[C] = 2!

/) already in the cloud.
O

N
\

/5

BELLMAN-FORD ALGORITHM

®* Works even with negative-weight edges

®* Must assume directed edges (for otherwise
we would have negative-weight cycles)

® Iteration [finds all shortest paths that use 1
edges.

® Running time: O(nm)

®* Can be extended to detect a negative-
weight cycle if it exists

®* How?

Algorithm BellmanFord(G, s)

1. Initialize D[s] < 0 and D[v] < oo for all
vertices V +# S

2. fori<1..n—1do

for each e € G.edges() do

u « e.source(); z « e.target()
if D[u] + e.weight() < D|[z] then
D|z] « D|u] + e.weight()

N O O

* Nodes are labeled with their D[v] values

1§ BELLMAN-FORD EXAMPLE
First

O 8 round 8

K EXERCISE
1 BELLMAN-FORD’S ALGORITHM

O

® Show how Bellman-Ford’s algorithm works on the following graph, assuming
you start with the top node

* Show how the labels are updated in each iteration (a separate figure for each iteration).

Find the distance between every pair of vertices in a weighted
directed graph G

We can make n calls to Dijkstra’s algorithm (if no negative
edges), which takes O(nmlogn) time.

Likewise, 1 calls to Bellman-Ford would take O(n?m) time.

We can achieve 0(n3) time using dynamic programming
(similar to the Floyd-Warshall algorithm).

Uses only vertices numbered i, ..., j
+.., (compute weight of this edge)

(O Uses only vertices e U
numbered i, ..., k Uses only vertices
numbered k, ..., j

ALL-PAIRS SHORTEST PATHS

Algorithm AllPairsShortestPath(G)

Input: Graph G with vertices labeled 1, ..., n

Output: Distances D|i, j] of shortest path lengths between
each pair of vertices

1. for each vertex pair (i,j) do

2. if { = j then

3. Doli,i] « 0

4. elseif e = (i,j) is an edge in G then
5. Dyli, j] < e.weight()

6. else

7' Do[l,]] o 00

8. fork<1..ndo

9. fori < 1..n do

10. forj«<1..ndo

11. Dk[ln]] = min(Dk—l[iij]:Dk—l[ir k] + Dk—l[k;j])
12. return D,

